Print Your Name	Student ID $\#$							

Problem	Total Points	Score
1	11	
2	11	
3	11	
4	9	
5	8	
Total	50	

Directions

- Please check that your exam contains a total of 6 pages.
- Write complete solutions or you may not receive credit.
- This exam is closed book. You may use one 8.5×11 sheet of notes and a calculator.
- You may not share notes or calculators. You may not use a graphing calculator or any electronic device other than a calculator.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

Signature. Please sign below to indicate that you have not and will not give or receive any unauthorized assistance on this exam.

Signature: _____

1. (11 total points) Consider the following system of linear equations.

 $\begin{cases} x_1 + x_2 + x_3 = 0\\ 2x_2 + 5x_3 = -2\\ x_1 + 3x_2 + 6x_3 = -2 \end{cases}$

(a) (9 points) Find all solutions to this system of linear equations.

(b) (2 points) Let A be the coefficient matrix corresponding to the system of equations. Are the columns of A linearly independent?

2. (11 total points) Let

$$A = \left[\begin{array}{rrrr} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 4 & 5 & 8 \end{array} \right].$$

(a) (9 points) Find the inverse of A or state that A is not invertible.

(b) (2 points) Use your answer to part (a) to find the inverse of $A^{\rm T}$ or state that $A^{\rm T}$ is not invertible.

3. (11 total points) Let

$$A = \begin{bmatrix} 0 & 2 & 3 & 4 \\ 1 & -1 & 4 & 2 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 2 & 5 \end{bmatrix}$$

•

(a) (9 points) Find the determinant of A.

(b) (2 points) How many solutions are there to the equation $A\mathbf{x} = \mathbf{0}$?

- 4. (9 total points) For each statement, tell whether it is true or false and explain why. You do not need to prove anything, but your explanation should be clear.
 - (a) (3 points) True or false: If A is a nonsingular $n \times n$ matrix and $A^2 = A$, then $A = I_n$ (the identity matrix).

(b) (3 points) True or false: If A and B are $n \times n$ symmetric matrices, then A + B is also symmetric.

(c) (3 points) True or false: If A and B are nonsingular $n \times n$ matrices, then A + B is nonsingular.

5. (8 points) Prove that if the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ of vectors in \mathbf{R}^n is linearly dependent, then the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is also linearly dependent.