Print Your Name Student ID #								

Problem	Total Points	Score
1	8	
2	10	
3	8	
4	11	
5	8	
Total	45	

Directions

- Please check that your exam contains a total of 6 pages.
- Write complete solutions or you may not receive credit.
- This exam is closed book. You may use one 8.5×11 sheet of notes and a calculator.
- You may not share notes or calculators. You may not use a graphing calculator or any electronic device other than a calculator.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

Signature. Please sign below to indicate that you have not and will not give or receive any unauthorized assistance on this exam.

Signature: _____

1. (8 points) Find the <u>vector form</u> of the general solution to the following system of equations:

$$\begin{cases} 2x_1 - 2x_2 + 2x_4 = 7\\ x_1 - 2x_2 - x_3 - x_4 = 2\\ 3x_1 - 2x_2 + x_3 + x_4 = 2 \end{cases}$$

2. (10 total points) Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, and $\vec{\mathbf{x}} = \begin{bmatrix} 8 \\ -7 \\ 4 \end{bmatrix}$

(a) (4 points) Compute BA and $B\vec{\mathbf{x}}$.

(b) (3 points) Is A singular or nonsingular? Explain your answer.

(c) (3 points) Are A and B row equivalent? Explain your answer.

- 3. (8 total points)
 - (a) (4 points) Under what condition is the following set of vectors linearly independent? Express your answer in terms of a, b, and c.

∫	1]	$\begin{bmatrix} b \end{bmatrix}$]]
J	a	,]

(b) (4 points) Is the following set of vectors linearly dependent or independent? Explain your answer.

ſ	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$		1		$\begin{bmatrix} 3\\ -1 \end{bmatrix}$	
{	$\begin{bmatrix} 1\\0\\1 \end{bmatrix}$,	$\begin{array}{c} -1\\ 0\\ 2\end{array}$,	$\begin{bmatrix} 3\\ -1\\ 0\\ 5 \end{bmatrix}$	}

4. (11 total points) Let
$$A = \begin{bmatrix} 10 & 5 & 1 \\ 2 & 0 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$
 and $B^{-1} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.

(a) (6 points) Find the inverse of A.

(b) (5 points) Find $(A^T B)^{-1}$.

- 5. (8 total points) We say that a matrix A is **skew-symmetric** if $A^T = -A$. Recall that a matrix B is **symmetric** if $B^T = B$. Prove the following (relatively unrelated) facts:
 - (a) (4 points) If $A = (a_{ij})$ is a skew-symmetric $n \times n$ matrix then every entry a_{ii} along the main diagonal is zero.

(b) (4 points) If A is a skew-symmetric $n \times n$ matrix, then A^2 is symmetric.