Print Your Name Student ID #

Problem	Total Points	Score
1	12	
2	7	
3	7	
4	7	
5	11	
6	6	
Total	50	

Directions

- Please check that your exam contains a total of 7 pages.
- Write complete solutions or you may not receive credit.
- This exam is closed book. You may use one 8.5×11 sheet of notes and a calculator.
- You may not share notes or calculators. You may not use a graphing calculator or any electronic device other than a calculator.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

Signature. Please sign below to indicate that you have not and will not give or receive any unauthorized assistance on this exam.

Signature: _____

1. (12 total points) Let

$$A = \begin{bmatrix} 2 & 0 & 18 & 36 & 16 \\ 5 & 6 & 21 & 12 & 10 \\ -1 & 6 & -33 & -96 & -38 \end{bmatrix}$$

To save you time, I have done the following helpful calculations:

$\operatorname{rref}(A)$				A^{T}			$\operatorname{rref}(A^{\mathrm{T}})$				
					2	$5 \\ 6$	-1	[1]	0	-3]	
[1]	0	9	18	8]	0	6	6	0	1	1	
0	1	-4	-13	-5	18	21	-33	0	0	0	
0	0	0	0	0	36	12	-96	0	0	0	
					16	10	$-33 \\ -96 \\ -38$	0	0	0	

(a) (3 points) Find a basis for the range of A.

(b) (3 points) Find a basis for the nullspace of A.

(c) (3 points) Find a basis for the row space of A such that each vector in the basis is one of the rows of A.

(d) (3 points) What are the rank and nullity of A?

2. (7 total points) Define a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ as follows:

$$T\left(\left[\begin{array}{c}a\\b\end{array}\right]\right) = \left[\begin{array}{c}2b\\-3a\end{array}\right]$$

(a) (5 points) Find the matrix A so that $T(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$.

(b) (2 points) What is the dimension of the range of T?

3. (7 points) Let W be a subspace of \mathbb{R}^4 , and suppose that $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \vec{\mathbf{v}}_3\}$ is a basis for W, where

$$\vec{\mathbf{v}}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad \vec{\mathbf{v}}_2 = \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix}, \quad \vec{\mathbf{v}}_3 = \begin{bmatrix} 4\\8\\-4\\4 \end{bmatrix}.$$

Find an orthogonal basis for W.

4. (7 points) Suppose that we have the following data for a certain population:

Time (years)	1	2	3	_
Population	88	66	50	

Midterm 2

Use the least-squares method to find a linear fit for this data. In other words, find a function P(t) = a + bt that best approximates this population data.

- 5. (11 points) True or false. No justification is necessary.
 - (a) The function defined by $T\left(\begin{bmatrix} x_1\\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 x_2\\ x_1 9 \end{bmatrix}$ is a linear transformation.
 - (b) For any $(m \times n)$ matrix A and $(m \times 1)$ vector $\vec{\mathbf{b}}$, the equation $A^{\mathrm{T}}A\vec{\mathbf{x}} = A^{\mathrm{T}}\vec{\mathbf{b}}$ has at least one solution.
 - (c) Any orthogonal set of nonzero vectors in \mathbb{R}^n is linearly independent.
 - (d) If U and V are subspaces of \mathbb{R}^n and dim $U \leq \dim V$, then U is a subspace of V (that is, every vector of U is also in V).
 - (e) The function from \mathbb{R}^n to \mathbb{R}^n defined by $T(\vec{\mathbf{x}}) = \vec{\mathbf{0}}$ is a linear transformation.
 - (f) If $\{\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \dots, \vec{\mathbf{v}}_n\}$ is a basis for \mathbb{R}^n , then the matrix $A = [\vec{\mathbf{v}}_1 \ \vec{\mathbf{v}}_2 \ \cdots \ \vec{\mathbf{v}}_n]$ whose columns are these basis vectors is a nonsingular matrix.

6. (6 points) Let U and V be subspaces of \mathbb{R}^n . Recall that the *intersection* of U and V is defined as follows:

 $U \cap V = \{ \vec{\mathbf{x}} : \vec{\mathbf{x}} \text{ is in } U \text{ and } \vec{\mathbf{x}} \text{ is in } V \}.$

Prove that $U \cap V$ is a subspace of \mathbb{R}^n .