- 1. (a) $A^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} c & d \\ a & b \end{bmatrix}$
 - (c) 2
 - (d) The characteristic polynomial is $\lambda^2 1$, so the eigenvalues are 1 and -1. The eigenspace E_1 is the nullspace of the matrix $\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$, and a basis is $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$. The eigenspace E_{-1} is the nullspace of the matrix $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, and a basis is $\left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$. (e) Yes. An eigenbasis is $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$.
 - (f) The line is y = x because vectors along this line (multiples of $\begin{bmatrix} 1\\1 \end{bmatrix}$) are not changed and vectors perpendicular to this line (multiples of $\begin{bmatrix} 1\\-1 \end{bmatrix}$) are flipped.
- 2. (a) The characteristic polynomial is

$$\begin{vmatrix} -\lambda & -2 & -2 \\ 0 & 1-\lambda & -1 \\ 0 & 1 & 3-\lambda \end{vmatrix} = -\lambda^3 + 4\lambda^2 - 4\lambda = -\lambda(\lambda - 2)^2.$$

- (b) A has an eigenvalue of 0 with algebraic multiplicity 1 and an eigenvalue of 2 with algebraic multiplicity 2.
- (c) The geometric multiplicity must be between 1 and the algebraic multiplicity. So the geometric multiplicity of 0 must be 1. The geometric multiplicity of 2 must also be 1, because if it were 2 then the matrix would be diagonalizable.

3. (a)
$$E_2$$
 is the nullspace of the matrix $\begin{pmatrix} -5 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. A basis is $\left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$

- (b) Yes. The geometric multiplicity of 2 is 2, but the algebraic multiplicity is 3.
- 4. (a) $A = \begin{bmatrix} -1 & 1 \\ 2 & -2 \end{bmatrix}$ (b) $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$.
- 5. (a) For example, $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$. Any linearly independent set with one or two vectors will work. If you put 3 linearly independent vectors then you would have a basis.
 - (b) The subspace with basis $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$ (This is a line through the origin). (c) The subspace with basis $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$ (This is a plane through the origin).

- (d) For example, a 2×3 matrix and a 3×2 matrix.
- (e) Solve the system of equations $\begin{pmatrix} 1 & 2 & | & 9 \\ 1 & 3 & | & 14 \end{pmatrix}$ and get $x_1 = -1, x_2 = 5$. So we have $\begin{bmatrix} 9 \\ 14 \end{bmatrix} = -1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.
- 6. (a) False. It doesn't include the zero vector.
 - (b) False. This is only true for matrices that are not defective.
 - (c) True. There is always at least one solution, the trivial solution.
 - (d) True. This is part of the definition of a basis.
 - (e) True. A matrix is nonsingular if and only if it is invertible.

7. True. Let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ and let *a* be any scalar. Then

$$T(\mathbf{x} + \mathbf{y}) = T\left(\begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 + y_1 \\ x_1 + y_1 \\ x_1 + y_1 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix} + \begin{bmatrix} y + 1 \\ y + 1 \\ y + 1 \end{bmatrix}$$
$$= T(\mathbf{x}) + T(\mathbf{y}), \text{ and}$$
$$T(a\mathbf{x}) = T\left(\begin{bmatrix} ax_1 \\ ax_2 \end{bmatrix} \right) = \begin{bmatrix} ax_1 \\ ax_1 \\ ax_1 \end{bmatrix} = a \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix} = aT(\mathbf{x}).$$

This is the definition of a linear transformation, so T is a linear transformation.

8. (a) $A^3 = AA^2 = AI = A$. (b)

$$(A+I)^2 = (A+I)(A+I)$$
$$= A^2 + IA + AI + I^2$$
$$= I + A + A + I$$
$$= 2(A+I)$$

- (c) A is an invertible matrix, with $A^{-1} = A$. So $A\mathbf{x} = \mathbf{b}$ is always consistent. In fact $\mathbf{x} = A\mathbf{b}$ is a solution, since $A(A\mathbf{b}) = A^2\mathbf{b} = I\mathbf{b} = \mathbf{b}$.
- (d) A is invertible, so its rank is n.
- (e) A is invertible so its nullity is 0.