Print Your Name	Student ID $\#$						
]						

Problem	Total Points	Score
1	18	
2	11	
3	7	
4	8	
5	14	
6	6	
7	6	
8	10	
Total	80	

Directions

- Please check that your exam contains a total of 9 pages.
- Write complete solutions or you may not receive credit.
- This exam is closed book. You may use one 8.5×11 sheet of notes and a calculator.
- You may not share notes or calculators. You may not use a graphing calculator or any electronic device other than a calculator.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

Signature. Please sign below to indicate that you have not and will not give or receive any unauthorized assistance on this exam.

Signature: _____

- 1. (18 total points) Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
 - (a) (3 points) Find A^{-1} .

(b) (2 points) Let
$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Calculate AB .

(c) (2 points) What is the rank of A?

(continuing Problem 1, A is still $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$)

(d) (7 points) Find all eigenvalues of A, and for each eigenvalue, find a basis for the corresponding eigenspace.

(e) (3 points) Is A diagonalizable? Find an eigenbasis, if one exists.

(f) (1 point) The linear transformation $T(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$ flips vectors in \mathbb{R}^2 across a line. Which line? [Hint: use your answer to part (d)]

2. (11 total points)

Let $A = \begin{bmatrix} 0 & -2 & -2 \\ 0 & 1 & -1 \\ 0 & 1 & 3 \end{bmatrix}$.

(a) (6 points) Find the characteristic polynomial of A

(b) (3 points) List the eigenvalues of A and their algebraic multiplicities. DO NOT FIND THE EIGENVECTORS.

(c) (2 points) A is a defective (not diagonalizable) matrix. Use this information to tell me the geometric multiplicity of each eigenvalue.

3. (7 total points) Let $A = \begin{bmatrix} -3 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$.

The characteristic polynomial of A is $(\lambda + 3)(\lambda - 2)^3$.

(a) (5 points) Find a basis for the eigenspace of A corresponding to eigenvalue $\lambda = 2$.

(b) (2 points) Is A defective?

4. (8 total points) Suppose that $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation, and suppose that

$$T\left(\left[\begin{array}{c}1\\1\end{array}\right]\right) = \left[\begin{array}{c}0\\0\end{array}\right] \qquad \qquad T\left(\left[\begin{array}{c}1\\0\end{array}\right]\right) = \left[\begin{array}{c}-1\\2\end{array}\right]$$

(a) (6 points) Find the matrix A such that $T(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$.

(b) (2 points) Use your answer above to find $T\left(\begin{bmatrix} 2/3\\ 5/3 \end{bmatrix} \right)$

- 5. (14 total points)
 - (a) (3 points) Give an example of a linearly independent set in \mathbb{R}^3 that is not a basis for \mathbb{R}^3 .

(b) (3 points) Give a specific example of a one-dimensional subspace of \mathbb{R}^3 .

(c) (3 points) Give a specific example of a two-dimensional subspace of \mathbb{R}^3 .

(d) (2 points) Give an example of two non-square matrices whose product is a square matrix.

(e) (3 points) Write
$$\begin{bmatrix} 9\\14 \end{bmatrix}$$
 as a linear combination of $\begin{bmatrix} 1\\1 \end{bmatrix}$ and $\begin{bmatrix} 2\\3 \end{bmatrix}$.

- 6. (6 points) True or false. No justification is necessary. No penalty for guessing.
 - (a) The set $\left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : 2x_1 3x_2 = 1 \right\}$ is a subspace of \mathbb{R}^2 .
 - (b) For any $n \times n$ matrix A, the sum of the dimensions of its eigenspaces is n.
 - (c) Every homogeneous system of equations is consistent.
 - (d) Every basis is linearly independent.
 - (e) Every nonsingular matrix has an inverse.
- 7. (6 points) Define a function $T : \mathbb{R}^2 \to \mathbb{R}^3$ by $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 \\ x_1 \\ x_1 \end{bmatrix}$.
 - (a) True or false: T is a linear transformation.
 - (b) Prove your answer to part (a).

8. (10 points) Let A be an n×n matrix such that A² = I (Where I is the n×n identity matrix.)
(a) (2 points) Prove that A³ = A.

(b) (2 points) Prove that $(A + I)^2 = 2(A + I)$.

(c) (3 points) Prove that $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$ is consistent for any $\vec{\mathbf{b}} \in \mathbb{R}^n$.

(d) (2 points) What is the rank of A?

(e) (1 point) What is the nullity of A?